

APPOLO STUDY CENTRE TRB PG ZOOLOGY - 2013

1		
1.	1. The arrangement of microtubules in the s (A) 9 + 0 $(B) 7 + 2$	C) $7 + 0$ (D) $9 + 2$
2.	2. The attachment of the blastocyst to the ut (A) Implantation (B) (C) Migration (D)	
3.	3. The sex Phenotype in Drosophila is medi (A) X chromosome : Y chromosome (B) X chromosome : Autosome (C) Y chromosome : Autosome (D) All the above	ated by the ratio of :
4.	4. The human eye is lubricated by the secre (A) Lacrimal (B) (C) Prostaglandin F (D)	tion ofgland. prostaglandin E
5.	. ,	Marfan's syndrome) Hutchinson - Gilford Progeria
6.		e : 5' end of mRNA Non coding region-1
7.	7. Interaction between products of non-allel (A) Segregation (B) (C) Epistasis (D)	Independent Assortment
8.	B. Erythroblastosis fetalis is caused in betwee (A) Rh^{-ve} mother and Rh^{+ve} fetus (B) Rh^{-ve} mother and Rh^{-ve} fetus	een :

	(C) (D)			
9.	(A)	of the following is an example f Coliphage Lambda P22 phage	for spe (B) (D)	T2 phage
10.	. F¹el (A) 1	ements are discovered in the yea 1929 (B) 1939		C) 1959 (D) 1969
11.	(A) I	llele frequency p is : Recessive allele Both (A) and (B) are correct	(B) (D)	Dominant allele None
12.	(A)	nism is caused due to the : Lack of pigment Both (A) and (B) are correct	(B) (D)	Recessive allele None
13.	calle	ory which forms the basis of Mo ed : Neodarwinism Population genetics	dern V (B) (D)	Views of evolutionary theory is Neolamarckism None
14.	(A)	study of fossil is called : Palaeontology Ichthyology	(B) (D)	Archeology All
15.	.The (A) (C)	'Golden age of Dinosaurs' is : Palaeozoic Cenozoic	(B) N (D)	Mesozoic Psychozoic
16.	. Whi (A) (C)	ch enzyme recognizes the dama RNA Polymerase Glycosylase	ged ba (B) (D)	DNA Polymerase
17.	(A) (B) (C)	ogenes are a set of genes respons Formation of liver cells Formation of nerve cells Formation of kidney cells Formation of normal cell into to		
18.	.The (A) (C)	other name for Phagocytosis : cell vomiting cell organelle	(B) (D)	cell drinking cell eating

19.	(A) (B)	otubules of spindle fibre are asse Ribonucleotide monomers Tubulin monomers Deoxyribonucleotide monomer Glucose monomers		d from	1	<u> </u>			
20.		conservative method of DNA R Watson and Crick	eplica (B)			osed by : Rosenberg			
	(C)	Flemming	(D)			Rosenberg			
21.	21. In which stage of development, highly co-ordinated cell and tissue movements art observed?								
	(A)	Zygote	(B)	Moru	la				
	(C)		(D)	Blastı	ıla				
22.		ch term in physiology refers to a to metabolic rate in animals dur			ition wit	th a substantial			
	(A)		(B)		ation				
	(C)	Estivation	(D)	Dorn	mancy				
	verte (A) (C) Whice	principal factors controlling the obtates are derived from: Pituitary gland Thyroid Gland ch hormone is the main determinan during early development?	(B) (D)	Hypo Adre	othalamı enal glan	us d			
	(A) F			(B)	LH				
	(C)	GnRH		(D)	Testoste	eron			
25.	eggs	staining technique to construct was discovered by:		1					
	(A)	Vogt (B) Spratt	(0	C)Benz	zer	(D) Wadington			
26.		n the data is classified according			nitude, it itative d				
	(A)	Chronological data	(B)	-					
	(C)	Quantitative data	(D)	Cont	inuous d	ıaıa			
27.	Mult (A) (B) (C)	ciple Bar diagram is used to represential frequencies of a var frequency distribution of more Continuous Quantitative data.	riable		ariable.				
	(D)	Frequency of two or more char	acters	5.					

28	(A) (B)	uency polygon: Frequency dis Frequency dis Cumulative freq	tribut tribut	ion of Qua ion of Qua	litativ ntitati	e dat	a	
		Percentage free	-					
29	(A)	entage frequenc Frequency Poly Pie diagram	-	ribution is	(B)	Ogi	d by : ive representa quency table	tion
30	matl	the Arithmetic nematics in an e 5, 17, 45, 35,					-	
	(A)	25	(B)	35		(C)	15	(D)30
31		oth endoplasmi e synthesis! of_		culum of o	vary,	testis	and adrenal	cortex has a role
	` '	Creatine					amins	
	(C)	Growth hormo	ne	1 3	(D)	Ste	roid hormone	S
32	-	osomal digestior Autophagy	n of in	tracellular		nate Autol	. 1 1	as
		Allophagy		Y	C B		erophagy	
33		ukaryotes 70 - 90		rRNA syn	thesiz	ed in	·	
	` '	Nuclear memb	rane		(B)		romosome	
	(C)	Nucleolus			(D)	Cyt	coplasm	
34	. Axo	neme are found	in:					
	(A)				(B)	_	ndle fibres	
	(C)	Pseudopodium	ı		(D)	Cili	ium	
35	.hnR	NAs are the pre	curso	rs of the				
	(A)t	RNA	(B)	rRNA	((C)m	RNA	(D)DNA
36	. Wha	nt is the animal s	symbo	ol of W.W.I	F ?			
	(A)T	_			(B) K	langa	aroo	
	(C)	Red Panda			(D)	Gia	nt Panda	
37	. Whi	ch is mainly res	ponsi	ble for the	extinc	tion (of wild life?	
	(A)	Pollution of ai			(B)		nting for flesh	
	(C)	Destruction of	habit	ats	(D)	All	of these	

<i>3</i> 6. App	roximately 50% of total world sj	pecies	s are present on:
(A)	Coral reefs	(B)	Tropical rain forest
(C)	Temperate deciduous forest	(D)	-
	ch substance is synthesised by S		
(A)	Adenine	(B)	Ribose
(C)	Both (A) and (B) are correct	(D)	None
	proposed new species arise fro	_	0 2
(A)	Darwin and Wallace	(B)	Malthas
(C)	Smith	(D)	Jacob and Monod
	arrangement of mutant and wild		9
hete	rozygote is called co	nfigu	ration.
(A)	Cis	(B)	
(C)	chiasma	(D)	three factor cross
42. Cros	ssing over occurs after :		
(A)	Translation	(B)	Transcription
(C)	Replication	(D)	Mutation
43. In sy	nkaryons, the number of nucleu	ıs wil	1 be :
(A)1		(C)	
44. The	three species, which are exhibiti	ng sa	me basic mtDNA organization, are
(A)	Human, Drosophila and Yeast		
(B)	Human, Mice and Cattle		
` '	Human, Mice and Drosophila		
(D)	Human, Mice and Yeast,		
45 HW	equilibrium on multiple loci is a	annlic	rable only at the state of ·
(A)	Dominance	(B)	•
` /	Segregation	(D)	
(C)	Segregation	(D)	Linkage Disequilibrium
	n ecosystem the unit of measure		0,7
` /	Calories	(B)	joules
(C)	Kilogram	(D)	erg
	ch one is the example for Antibi		A 1
` '	Penicillin	(B)	Azotobacter
(C)	E. Coli	(D)	Klebsiella

48. IUCN headquarters is at:	(D)D
(A) Paris(C) Morges, Switzerland	(B)Prance (D)Austria
(C) Morges, Switzerland	(D)/Austria
49. Ex situ conservation includes :	
(A) Zoo	(B)Botanical garden
(C) Germplasm bank	(D) All of the above
50. Hot spots are regions of high:	
(A) Endemism	(B) Ranity
(C)Critically endangered population	n (D) None
51. Formula for Median of ungrouped of	data is
$(A)\left[\frac{n+1}{2}\right]^{th}$ item	$(B)\frac{n}{2}$
_	
$(C)L_1 + \left[\frac{\sum f}{2} - F\right] \times i$	(D)None of these
$(\bigcirc)^{-1}$ fm	(5)20115 02 11:050
52. The demerits of Mode are:	A F
(A) Mode is rigidly defined	1 / TRL
(B) As compared to Mean, Mode	is affected to a great extent by the
fluctuations of sampling	C. F.
(C) It is suitable for algebraic treat	tment
(D) All the above	
53. Median is	
(A) Central value	(B) Central tendency
(C) Positional average	(D) All of them
	, ,
54. The tRNA is otherwise called as	
(A) soluble RNA	(B) supernatant RNA
(C) adaptor RNA	(D) All of these
55. Okazaki fragments are formed durin	ng
` '	(B) DNA synthesis
(C) Protein synthesis (D) Lipid synthesis
EXTITUTE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
56. Which is the principal mediator of the	
(A) Histamine(C) Lymphocyte	(B) Glucose (D) None
	121 11010

57. Which is the secondary lymphoid organ?							
	(A)	Lymph	(B)	Liver			
	` '	pleen	(D)	None			
	(C) 5	piceri	(D)	TVOTE			
E0	V	for calls are present in the					
<i>5</i> 0.	-	fer cells are present in the :	(D)	т.			
	(A)	Kidney	(B)	Liver			
	(C)	Bone	(D)	None			
59.	Whic	ch is the basis for the firs, biologi	cal as	ssay for I _e E activity ?			
		PK reaction	(B)	NK reaction			
			(D)	None			
	(C)	NI Teaction	(D)	None			
60.	Expa	nsion of OPV :					
	(A)	Oral Polysaccharide Vaccine					
	` /	Oral Pertussis Vaccine					
	` '						
		Oral Polio Vaccine					
	(D)	None					
	1	1 (1 5					
61.	The o	colour of the Taenia solium is		·			
	(A)	Opaque white	(B)	Transparent			
	(C)	Yellow	(D)	Reddish Yellow			
				171			
62.	The f	emale genital aperture in Ascari	s lun	nbricoides is called			
	(A)		(B)	Anus			
	(C)	Vulva	(D)	Vagina			
	(0)	, and	(D)	Vagna			
63.	Balaı	noglossus resembles					
	(A)		(B)	Echinoderms			
	(C)	Platyheiminthes	(D)	Annelida			
	(C)	1 laty lemmines	(D)	Tillicia			
64.	The 1	norns and hoofs of animals are u	sed f	or the preparation of .			
	(A)	Handles of Knives	(B)	Purses			
	(C)	Slippers	(D)	Suitcases			
	(0)	chpters	(2)	Sarreases			
65.	Cult	are of fishes along with agricultu	ire is	called			
	(A)	Monoculture	(B)	Fish culture			
	(C)	Integrated fish culture	(D)				
	(0)	integrated non culture	(2)	Tiordicartare			
66	The	shape of the heart of rabbit is					
	(A)	Pear shaped	(B)	 Conical shaped			
	` '	<u>*</u>		*			
	(C)	Triangular shaped	(D)	S - shaped			

67. The testes of scoliodon are:

	(B) (C)	Elongated, very long and Small, oval white colour		
	(D)	Comparatively large, ov		oured
68.	weal (A) (B)	k acid with its conjugate b Michaelis Menten's equa Lowry equation	ase is given	ouffering action of a mixture of by :
	` '	Knoops theory Henderson - Hasselbalch	Equation	
69.		arrangement of fundamer Ernest Rutherford Bronsted	atal particles (B) (D)	inside an atom was proposed by Calvin Mendel
70.	The (A)	pH of human blood is: 8.0 (B) 7.5		(C) 7.4 (D) 6.0
71.		made the first attempt to	classify the	
	` '	Carolus Linnaeus	(B)	Aristotle
	(C)	Charles Darwin	(D)	Alexander Flemming
72	The	study of Zoology is necess	sary for prer	professional work in
		Medicine	(B)	Dentistry
	` '	Veterinary Science	` /	All the above
73.		ne upper part of the large i	ntestine of N	Man, Entamoeba histolytica
		Ulcer and abscesses	(B)	Acidity
		Hernia	\ /	Stomach tuberculosis
74.	Plas	modium in red blood corp	ouscles posse	esses double membrane namely:
	(A)	Plasma membrane	(B)	Plasmalemma
	(C)	Cell membrane	(D)	Endoplasmic reticulum
75.		alariae causes Quartan ma y	alaria in whi	ch fever comes on
		24 hrs	(B)	48 hrs
	(C)	72 hrs	(D)	96 hrs
7.	D	. 1 17 10 1	• 1	

76. Bronsted and Lowry defined acid as:

(A) Small, rod like oval bodies

	(A)	Proton acceptor	(B)	Proton donor
	(C)	Electron acceptor	(D)	Electron donor
77.		molecular formula for pyruvic ac		
	` '	CH3.CO.COOH	` '	CH ₃ .COOH
	(C)	CH ₃ .CH ₂ .COOH	(D) C	CH ₃ .CH ₂ .COOH
78	Cluc	agon hormone converts :		
70.		Glucose into Glycogen	(B)	Clycogon into Clycoso
		• 0	` '	•
	(C)	Glucose into Fructose	(D)	Fructose into Giucose
79.	.The	data collected by investigator fro	m pei	rsonal experimental studies is
	calle	2	1	1
		Secondary data	(B)	Arrayed data
	(C)	5	(D)	None of the above
	(-)	. ,	()	
80.	Adv	antages of census methods are:		
		The data has high degree of acc	curacy	J /
		The data is more representative		
		Results are more reliable	und	
		All the above		
	(D)	All the above		TRL
Q1	A mr	oullae of Lorenzini are found in :		NTRE
01.	_		(P)	
	(A)	Insects	(B)	Elasmobranch
	(C)	Amphibians	(D)	both (B) and (C)
82.	The	most primitive photoreceptor is	presei	nt in :
	(A)	Teleosts	(B)	Bacteria
	(C)	Euglena	(D)	Calotes
	(0)	Zugieriu	(2)	Carotes
83.	Acet	ylcholine is a :		
	(A)	Mechanotransmitter	(B)	Neurotransmitter
	(C)	Phototransmitter	(D)	All the above
0.4	TC1			1 . 1 . 1
84.		amount of retinol, retinal, rhodo	psın a	nd lodopsin decreases with diet
		rient in :	(T)	
		Vitamin B	(B)	Vitamin B12
	(C) V	⁷ itamin A	(D)	Vitamin C
85	Amo	ong the following which is not a g	gastro	ointestinal tract hormone ·
J.J.	(A)	Histamine	(B)	Insulin
	(C)	Secretin	(D)	Gastrin
	(\smile)	occicuii	(\mathcal{D})	Guotifi

вь. пар	itens are :								
(A)	Antigenic and	d Immu	nogenic						
(B)	Antigenic		O						
(C)	· ·	2							
(D)	None								
(-)									
87 V - r	region in the im	munool	obulin me	olecu	le is ·				
	Constant	(B) Ina				Variable		(D)	None
` '	phils causes:	(D) III	active	'	(C)	v arrabie		(D)	TVOTIC
	_	(D) A == .		((~\ E.	~~~~	(D)	NIa	
(A)	Allergic	(B) And	emia	((C) F	ever	(D)	Noı	ne
90 Dag	ituiliaatian ia aa	يه ادهنس	. 4 1						
	itrification is ca	irriea ou	it by:	(D)	D	1			
(A)				(B)		udomonas	3		
(C)	Clostridium			(D)	Azc	otobacter			
00 1471	1.1.		. 0						
	corned the ter	5			(0)			-	
(A)	Odum	(B)	Dash		(C)	Tansley		(D)) Non
04 551			600						
	frequency of pl	henylket	tonuria ar	nong	the o	ttspring of	unre	lated	parents
will									
(A)	0.0001	(B) 0	.001		(C) 0	.01		D) 0.	1
						$I \setminus I$			
	of the followin	g is an ϵ	example for	or gei	netica	lly engine	ered p	rotei	n used
in in	dustries :		-1	1					
(A)	Гаq DNA polyı	nerase		(B)	Rev	erse transc	criptas	se	
(C)	α – amylase			(D)	Chy	motrypsin	1		
	CI								
93	Cleavag	e site is	used to jo	in th	e HG	H DNA wi	ith the	e DN.	A of E.
coli.									
(A)	EcoRI	(B) H	aelll	(C) Eco	oR II	(D) Hin	ıd III
94	Promote	er is join	ed in the	high	- lysir	ne zein cod	e. ling	genes	:
	CaMV 35 S							(D	
95. Cho	lecystokinin is	a mamn	nalin gastı	ro int	estina	ıl hormone	e secre	eted f	rom:
	Stomach		_			Pancreas			Liver
` /		· /			` /			` /	
96. Whi	ch of the fossil	man is n	nost recer	nt?					
(A)N	Veanderthal			(B)	Zmia	inthropus			
, ,	Cro-Magnon			` '	,	nthropus			
(=)	220 2.24611011			(~)	21101				
97 Whe	en was the 'Mar	and the	e Biosphe	re'. a	broad	l based ecc	ologic	al	
~ · · · · · · · · · · · · · · · · · · ·	11101	- with till	LOOPIIC	, u	~ LOUC	. Lusca ccc			

programme, launched by the UNESCO?

(A)	1967	(B)	1983	(0	C)	1953	(D)1971
98. Cons (A) (B) (C) (D)	servation of na Proper use of Protection of Management All the above	natur natur of nat	al habitat al habitat				
	phere reserve- 1986	projec (B)	t' was starte 1985	ed in l	nd (C		: (D) 1975
100. Wh (A) (B) (C) (D)	ny do we need To conserve l To maintain l To learn abou All	oiolog nealthy	ical diversit v ecosystem	y	.ow	they are	changing
	ring the metab Urea Ammonia	olic ac		(B)	Ur	le is assoc ic acid nino acid	
102. The calle (A) (C)	d: Toxicity	cle alv	vays remair	(B) (D)	T	of light te onicity onductivit	ension in the body is
activ						$= \frac{k_1}{k_2} \times \frac{10}{(t_2 - t_2)}$	mperature and rate of $\frac{0}{rt_1}$
(C) Q	$Q_{10} = \frac{k_2}{k_1} \times \frac{10^2}{(t_2 - t_1)^2}$	-)		(D) (Q ₁₀	$= \frac{k_1}{k_2} \times \frac{1}{(t_2 - t_2)}$	$\frac{0}{-t_1)}$
_	uatic animals t aid to	hat liv	e only with	in a n	arr	ow range	of out side salinities
(A)	Euryhaline Trimethylami	ne		(B) (D)		enohaline urinotelio	
pher (A)	ne diffusion of (nomenon : Haemopoiesis Homeostasis		ns into the R	RBC fr (B)	F	the plasm Hamburge Iomeother	

106. During the digestion in small intestine, the food is mixed with three									
secre	secretion which are:								
(A)	Saliva, Bile and Gastric juice								
(B)	Saliva, Pancreatic juice and Intestinal juice								
(C)	Bile, Pancreatic juice and Gastric juice								
(D)	Pancreatic juice, Intestinal juice	and l	Bile						
107. For	107. Formation of Glucose from surplus amino acid is called:								
(A)	Gluconeogenesis	(B)	Glycogenesis						
(C)	Glycogenolysis	(D)	Glycolysis						
capa	city is:		ment with least oxygen carrying						
(A)	Haemoglobin	(B)	Chlorocruroin						
(C)	Haemoerythrin	(D)	Haemocyanin						
109. Pel	lagra is caused due to deficiency	of:							
(A)	Pyruvic acid	(B)	Nicotinic acid						
(C)	Folic acid	(D)	Fatty acid						
	uman heart beat starts at :		ENTIN						
(A)S	.A. node	(B)	A.V. node						
(C)	Purkinje fibres	(D)	Bundle of His						

Further Details Contact

APPOLO STUDY CENTRE

25, Nandhi Loop Street, West C.I.T.NAGAR, Chennai-600035.

(Near: T.Nagar Bus Stand, Landmark: Nandhi Statue)

Email: appolotnpsccoaching@gmail.com

appolosupport.com, www.appolotraining.com

www.appolo.pbworks.com

PH: 24339436, 42867555, 9840226187, 9789918859